Weather

Description

Roland Winkler talks about rules and regulations that are in place at airports to provide passenger security in harsh winter weather.

Content

The weather still has a major impact on aviation today. Weather forecasts in aviation not only support safety, but also provide important input on the subject of economical air traffic. As part of this presentation, I would like to give a rough overview of how air traffic works in the cold season. I will speak about de- and anti-icing of aircraft and the snow removal in the airside area. Finally, I will show which meteorological products are created to support safe and economical air traffic.

Go to Webcast...

Lecture slides...

Competency Framework
Application
Description

Rudolf Kaltenböck speaks about the challenges detecting snow from Radar data.

Content

Weather radar data offers high spatial and temporal structures of three dimensional precipitation fields and can be well used for warning and nowcasting of adverse winter weather. Radar reflectivity, Doppler velocity products and polarized radar moments de liver insights into cloud microphysics and dynamical properties, such as the discrimination between different types of hydrometeors, quantitative precipitation estimation, icing conditions or areas of strong shear. Beside aeronautical nowcasting application, also the limitations of using weather radar in a cold winter weather environment will be addressed.

Go to Webcast...

Lecture slides...

Description

Elena Nikolaeva presents the new pilot services EUMETSTA is releasing which will provide new data access capabilities.

Content

EUMETSAT is releasing new pilot services which will provide new data access capabilities. New services include the EUMETSAT Data Store and EUMETSAT Data Tailor, as well as improvements to the EUMETView. In partnership with ECMWF, EUMETSAT is also offering hosted processing services through the European Weather Cloud. The necessary short information required to access and use these services will be provided during the presentation.

Go to Webcast...

Lecture slides...

Description

Ivan Smiljanić talks about the future possibilities detecting snow and ice from MTG data.

Content

Detection of snow, but also its classification (depth, crystal size, age) depends mostly on the spectral and spatial resolution of geostationary satellites. Having better spatial resolution and more spectral channels, Meteosat Third Generation satellites (MTG) will be able to see snow better and tell more about its flavours, especially in the visible and near-IR spectral regions. Join if you are interested to know how the snow detection will be done with MTG and what is "the colour of the snow" with future data.

Go to Webcast...

Lecture slides...

Description

Mária Putsay discusses how single channels and RGB types can be effectively used for snow detection.

Content

Single channels and RGB types will be discussed and compared from the snow detection point of view: how effectively they can be used for this purpose, which benefits and limitations they have. Physical background will be discussed and several examples will be shown.

Ideally an RGB type is usable for snow detection if the snow-covered cloud-free surface has good colour contrast against both now-free surface and clouds. Practically, one problem may cause difficulty: ice clouds and snowy land often appear similarly. Not surprising: their physical properties are similar as both consist of ice crystals. The presentation discusses which RGB types show snow and ice clouds less similarly. Forecasters usually look at animations, this also helps to distinguish snow covered area from moving ice clouds.

Go to Webcast...

Lecture slides...

Application
Description

Craig D. Smith talks about automated observations of solid precipitation and snow cover that are still one of the most difficult meteorological measurements to make with any known level of uncertainty.

Content

Automated observations of solid precipitation and snow cover are still one of the most difficult meteorological measurements to make with any known level of uncertainty. Many recommendations on best practices for measuring solid precipitation and snow cover emerged during and following the international Solid Precipitation Inter-Comparison Experiment (SPICE), including the development and application of transfer functions for adjusting precipitation gauge under-catch and techniques for minimizing errors in automated snow depth measurements. Following SPICE, work has continued on assessing and utilizing emerging technologies, such as optical and radar based present weather detectors, for improving the in situ measurement of solid precipitation. Furthermore, more effort is required to facilitate the transfer of techniques and best practices from research to application in operational networks.

Go to Webcast...

Lecture slides...

Description

In this presentation Tomaš Pučik and Christoph Gatzen explore different regimes under which ingredients come together and create marginal CAPE setups typical of winter

Content

Forecasting deep-moist convection and lightning in winter is challenging, partly because it occurs outside the typical season and partly because it forms in the environments characterized by marginal buoyancy. Despite weak CAPE, winter time convective storms often pose a considerable severe weather risk given their frequent collocation with strong vertical wind shear. In this presentation we explore different regimes under which ingredients come together and create marginal CAPE setups typical of winter. These include synoptically strongly-forced situations, elevated storms and the lake-effect over the European seas.

Go to Webcast...

Lecture slides...