Weather
This case study is analysing floods that occurred in central Europe during the period of June 2013.
The case study is analyzing floods in central Europe during the period of June 2013. The case starts with the development of a trough over central Europe on 22 May, seven days before the floods. From 29 May on, the trough intensified the rainy weather, causing southern and southeastern Germany to experience continuous rain over several days. Altogether the countries of Germany, Poland, Czech Republic and Austria were seriously affected by floods and the damages in Bavaria (Germany) only were estimated to 1.3 billion euros.
From 20 August to 2 September 2013 the Caramulo Mountains in central Portugal experienced a series of three large and devastating forest fire events.
From 20 August to 2 September 2013 the Caramulo Mountains in central Portugal experienced a series of three large and devastating forest fire events that caused a total burned area of about 9415.5 ha and 6 casualties. The Caramulo fires had overwhelming ecological, social and economic consequences that will be felt for several years. They were the result of a complex combination of variables from human factors to adverse meteorological and topographic conditions. This case study will address these variables of the Caramulo fires, which lead to environmental disaster.
The case study treats a series of wildfire that rage across Madeira Island.
In early August 2016, a series of wildfires raged across Madeira Island, in the North Atlantic Ocean, prompting the evacuation of more than one thousand people, destroying about 105 homes as well as a five-star hotel in Funchal, the main city in Madeira, and causing the death of 4 people. Flights at Madeira airport were disrupted due to the smoke. The fires caused ca. 60 million euros in losses. An area of ca. 3000 hectares was burned. This case study investigates the synoptic background that lead to this natural disaster.
Wecast of the SMHI online workshop on technical aspects of the PPS v2014 software package.
The EUMETSAT SAF to support Nowcasting (NWCSAF) develops two software packages, one for geostationary imagery and one for polar satellite imagery. Both packages retrieve cloud and other parameters relevant for nowcasting and other applications relying on cloud detection. For more information see www.nwcsaf.org
The Polar Platform System (PPS) software package retrieves information on clouds and precipitation from NOAA satellites, MetOp and S-NPP. The recent release of PPS v2014 features also a number of technical updates affecting installation of PPS and interfacing to your environment and applications.
The workshop is addressed to users of PPS wanting to update their application, but also to prospective new users.
The NWCSAF kindly invites you to participate to a two hour online training workshop on the installation, use and operation of the new PPS v2014 software. We plan to have appoximately four half-hour slots around the following subjects:
* Installation
* New output format
* Operating PPS via the main script "RunAllParallel.py"
* Setup PPS in a real-time environment (no Task Manager in v2014)
Presentations (PDF):
PPS v2014 Engineering Introduction
PPS v2014 Binary Distribuitions
PPS v2014 Running in Real-time
In this module, we will introduce the concept of Total Precipitable Water (TPW) and show how satellite-based products help in estimating the amount of water vapour in the atmosphere.
In this module, we will introduce the concept of "Total Precipitable Water" (TPW) and show how satellite-based products help in estimating the amount of water vapour in the atmosphere. The module starts with an overview on measuring principles and algorithms on how to retrieve the water vapour content of the atmosphere. In the second chapter, you will learn more about the different TPW products from geostationary and polar orbiting satellites. Finally you will see some practical applications of TPW products in nowcasting precipitation events.
Go to the Product Tutorial ...
The purpose of this tutorial is to help the reader understand and use the SEVIRI Physical Retrieval (SPhR) product of the EUMETSAT Nowcasting SAF.
The purpose of this tutorial is to help the reader understand and use the SEVIRI Physical Retrieval (SPhR) product. SPhR's purpose is to provide information on convective environmental parameters, particularly on moisture content and atmospheric instability. These parameters are crucial in studying the potential for deep convection, and in predicting the development of convective clouds. Moisture, instability and a lifting (trigger) mechanism are needed for the formation of deep convection.
The purpose of this tutorial is to give an introduction into the topic wind measurement from satellite.
Knowledge of atmospheric motion is essential for many applications. Information on high-level atmospheric winds is of great importance for forecast models as the current state of the atmosphere has to be specified before the future state can be predicted. Winds in the upper levels can be observed using radiosondes or aircraft measurements, but those observations are limited in time and space. As satellites provide worldwide and continuous data, they are the ideal data source for regular upper atmospheric wind information.
The purpose of this tutorial is to give an introduction into the topic of land surface temperature retrieval.
In this module we focus on the land and clarify the meaning of Land Surface Temperature (LST), a parameter often confused with air temperature, aerodynamic temperature or soil temperature. The term "Land Surface Temperature" is widely used by distinct research communities such as those of climate, numerical modelling or boundary layer studies while referring to different physical meanings. We take a deep look at LST by considering how this temperature can be obtained from satellite measurements and how it compares to other temperatures.
Sandwich products help to detect and analyse various cloud top features of storms (storm systems) in their mature phase.
This training module describes the Sandwich Products. These products help to detect and analyse various cloud top features of storms (storm systems) in their mature phase. It eases the detection of specific cloud-top features related to storm dynamics and microphysics, structure, and possible storm severity - such as overshooting tops, cold-U/V (enhanced-V) or cold-ring features, embedded warm spots/areas, gravity waves, above-anvil ice plumes, areas composed of very small ice particles, etc. These products directly support monitoring and nowcasting of convective storms. In areas with no, or poor, weather radar and surface observation coverage, this product is essential for proper storm detection.
Vortices at different scales in the WV image; small scale dark circles (eyes) represent sinking stratospheric air.
WV Vortices in the northern hemisphere are cyclonically rotating and therefore associated with a trough or low in the upper levels of the troposphere. This can also be seen in PV fields, which show high values near the centre of the vortex. High values of PV are related to low tropopause height, which explain the Dark Stripe in the WV image. The Dark Stripe implies that relatively dry stratospheric air is penetrating down into the higher levels of the troposphere. Within the Dark Stripe, a local maximum of PV can often be seen. Because of the local maximum, the cyclonic circulation is enhanced. Therefore, the Dark Stripe is being deformed and the moister air spirals around the dryer air. This process either leads to the formation of a WV structures. Investigation of about 100 cases over a period of two years shows that a distinction can be made between different WV structures. The two prevailing structures are the so-called WV Eddies and WV Eyes.
Waves are cloud bulges at the rear edge of Cold Front cloud bands, indicating the initial stage of secondary cyclogenesis.
A Wave development can be treated as a substructure in a Cold Front and indicates the initial stage of cyclogenesis. According to well-known polar front theory a low pressure area in the lower levels of the troposphere can develop if a small-scale disturbance is superimposed on the synoptic-scale air stream. This small-scale disturbance is caused by a transverse circulation within the baroclinic zone of the Cold Front. The transverse circulation is released by frontogenesis in the horizontal wind field that causes a fall in pressure, convergence and the production of cyclonic vorticity in the lower levels of the troposphere at the warm edge of the baroclinic zone. The consequence of this disturbance is that cold air moves south-eastward and warm air moves north-westward; this circulation is superimposed on the eastward-moving front. During this circulation a strengthening of the low pressure area occurs and further development of a new cyclone can be observed. In the case of the cloud bulge of a Wave a small scaled substructure within the stream lines can be observed: a strongly ascending Warm Conveyor Belt accompanies the area of the cloud bulge; a drier stream from behind approaches this relative stream; in the lower isentropic layers relative stream lines immediately south of the Wave form a saddle point - this is a consequence of the cyclonic circulation in the Wave area in the lower layers.
A Detached Warm Front shows a cloud configuration similar to that of a Warm Front Band, but is detached (isolated) from the Cold Front cloud band. It can be found at the leading edge of an upper level/thickness ridge.
In the case of an eastward moving classical frontal system the Detached Warm Front is mostly observed within the eastern branch of a pronounced synoptic scale ridge in the height and thickness fields, accompanied by strong winds in higher levels of the troposphere (approximately at 500 hPa) which blow normal to the movement of the ridge system. A possible and often observed indication for the formation of a Detached Warm Front is a splitting of the wind field within the mid- and upper levels of the troposphere in the area of the Warm Front into a north-western and a strong southern stream. This causes the cloud field of the Detached Warm Front to move more or less rapidly southward within the eastern branch of the upper level ridge which is, in this case, very close to the high gradient zone of equivalent thickness. The original frontal system, which is situated further north, moves from west to east. Consequently the different air streams cause two WA maxima. WA maxima contribute to upward motion which is one reason for the maintenance of cloudiness.