Weather
The session includes a summary of H SAF precipitation products, with particular attention to the most recent products.
The session includes a summary of H SAF precipitation products, with particular attention to the most recent products. The procedures to get access to the data, both for short range repository (last 60 days) and longtime archive data will be described. Moreover, the main data formats will be briefly presented, including the expected format changes in the near future. Python scripts and a Jupiter notebook developed for reading and visualization of precipitation data will be also presented.
Additionally, an example of Flood modelling with satellite rainfall data in Africa will be shown. Flood modelling over data scarce regions is challenging. Satellite rainfall data offer a viable tool to force hydrological models and provide discharge prediction at ungauged sites. However, being an indirect type of measurements, satellite rainfall observations can be subjected to significant bias and might be suboptimal over mountainous terrain. Here we show that model recalibration or bias correction even with a few rain gauges can provide boost hydrological model performance and thus make satellite rainfall data a valid solution to obtain discharge.
A demonstration session that gives an overview on how to download, read and visualize H SAF soil moisture data using the Python programming language.
The demonstration session gives an overview how to download, read and visualize H SAF soil moisture data using the Python programming language. Jupyter notebooks are used to present code examples, which are hosted at GitHub. H SAF Surface Soil Moisture (SSM) and Root-Zone Soil Moisture (RZSM) products are comprised of either Near Real-Time (NRT), Offline or Data Records (DR) products, which are freely available after user registration at the H SAF data portal. RZSM products are generated fromassimilating the ASCAT-derived surface SM in the ECMWF/H SAF land data assimilation system. Additionally, a hydrological exercise will highlight the added value of soil moisture satellite data for flood prediction. Soil moisture conditions have a great impact on the transformation of precipitation into runoff. A correct estimation of the initial soil moisture condition is a critical aspect for operational flood prediction. In the exercise we will test the sensitivity of flood response to initial soil moisture conditions using a simple hydrological model over an African Basin.
Regis Borde from Eumetsat explains in his presentation how winds are derived from polar orbiting satellites in the Arctic and Antarctic region.
Atmospheric Motion Vectors (AMVs) have been derived from geostationary satellites since late seventies. In 2001, an experimental polar wind product has been developed at the University of Wisconsin-Madison’s (CIMSS) using imagery from MODIS instrument on NASA’s Terra satellite. Filling the lack of observational data over Polar Regions this product demonstrated a global positive impact on the forecast not only over polar areas. Following the initial CIMSS developments, EUMETSAT recently started to extract polar winds from METOP AVHRR instrument. Regis Borde´s session will provide some general information about the current status of polar winds product and about its extraction. The general methodology to derive polar winds from satellite images is mainly based on the heritage used for geostationary satellites, but some specific problems had to be considered due to larger timeliness between consecutive images, to characteristics of the instruments and to specificities of polar areas atmosphere.
Ralf Bennartz from the University of Wisconsin gives an introduction on the principles of atmospheric soundings with AIRS and AMSU sensors.
High resolution infrared sounders, such as AIRS and IASI, and microwave sounders, such as AMSU, are a key element of the global satellite observing system and provide a wealth of data important for various operational applications including data assimilation and nowcasting applications. This presentation will revisit the physical basis of infrared and microwave sounding and provide an overview on the state-of-the-art of microwave and infrared soundings.
Nuno Moreira from IPMA guides you through the web sites mentioned in the presentations during the Polar Satellites Week.
In this session you will be taken on a website tour, visiting pages where polar satellite products referred during the whole EUMETRAIN Polar Satellite Week can be visualized. “Web-Visits” will naturally include EUMETSAT or NOAA pages and it will be an opportunity to make a wrap-up on the contents previously discussed...
Piet Stammes from KNMI talks about aerosol retrieval with GOME-2 instrument onboard MetOp satellites since 2006. Intercomparison with other instrument data and examples round up the presentation.
Aerosols are small liquid or solid particles in the atmosphere, like soil dust, sulphate and nitrate droplets, organic compounds, volcanic ash, etc.. Aerosols affect weather and climate by reflection and absorption of sunlight, by affecting cloud formation and precipitation, and by reducing visibility. Satellite detection of aerosols is often difficult because of the relatively weak reflectance of aerosols as compared to clouds and the background reflection of the underlying surface. Using UV-Visible spectrometers like OMI and GOME-2, UV absorbing aerosols like biomass burning smoke, volcanic ash and desert dust can be detected, even in cloudy cases and over land surfaces. In this presentation the current and future aerosol products from GOME-2 available from the O3MSAF will be introduced.
NOAA satellite analyst Sheldon Kusselson shows the variety of water vapour products available from polar platforms. A practical example concludes his presentation.
Since 1992 operational NOAA satellite analysts and forecasters have used polar orbiting microwave products to complement and supplement geostationary satellite, observational and computer model data to further improve precipitation forecasts. My session will provide an overview of current SSMIS and NOAA/MetOp MHS and AMSU polar orbiting microwave products, like Total Precipitable Water (TPW) and Rain Rate (RR) and how they can be used to help enhance precipitation forecasts with an emphasis on the eastern North Atlantic Ocean into the European continent. From these different individual satellite sensors microwave TPW and RR products have come a new class of satellite product called “the blended or merged product” that will also be discussed, displayed and compared with EUMETSAT geostationary satellite imagery. A case study showing these blended/merged TPW and RR products for the February 2010 Madeira storm will also be shown.
Steve Ackerman gives an introduction on cloud detection methods used to segregate cloud free from cloud contaminated satellite pixel.
Early in the history of polar orbiting satellite, imaging instruments were included to detect and classify clouds. Steve Ackerman will begin with a brief historical look at these first observations. This presentation will discuss the types of algorithms developed and applied to visible and infrared observations from the NOAA series, the two NASA EOS and the EUMETSAT MetOp platforms. Steve Ackerman will discuss areas of strength and weakness in cloud detection from these platforms and will end by exploring some climate and regional applications of the cloud analyzes from some of these cloud images.
Stefania De Angelis shows in her presentation the different categories of Hydro-SAF precipitation products derived from polar orbiting satellite data.
Monitoring and measurement of precipitation from satellite is an important capability for many types of users, such as the Meteorological Services, Hydro-geological Services and the structures of civil protection. The consortium H-SAF, within EUMETSAT, has among its objectives to provide continuous operational products for instantaneous measurement of rainfall using data from microwave instruments, on-board polar satellites, in synergy with the infrared data of the geostationary satellite MSG. In addition to the production operation, the HSAF provides validation service on each product and carries out independent validation of the benefits of the novel H-SAF satellite-derived data on hydrological practical applications.
Adam Dybbroe presents Nowcasting SAF products developed for polar satellites. He gives an overview on existing and future products retrieved from MetOp and NPP satellite data.
The EUMETSAT SAF to support Nowcasting (NWCSAF) develops two software packages, one for Geostationary imagery and one for polar satellite imagery. Both packages retrieve Cloud and other parameters relevant for Nowcasting and short range forecasting. The Polar Platform System (PPS) software package retrieves information on clouds and precipitation. The parameters/products derived are, Cloud Mask, Cloud Type, Cloud Top Temperature and Height, Precipitating Clouds, and a number of cloud microphysical parameters (e.g. liquid water path and cloud phase). The first version of PPS was released in 2004, and it was originally developed to run on local direct readout data from NOAA and Metop (AVHRR and AMSU/MHS). But recently it has been extended to run also on NPP/VIIRS data. And PPS is now also capable of running on many different data formats and services. It is currently being introduced on the EARS Network to run on NOAA19 and Metop-A. In this presentation Adam Dybbroe will give an overview of how PPS works, but the main focus will be on the parameters and products that can be derived with PPS, and how they can be used in Nowcasting applications.
Storm Xynthia developed over the North Atlantic in late February 2010. The ASCAT sensor of EUMETSAT MetOp-A satellite tracked its evolution and provided insight into the life cycle of the storm.
In this presentation Nuno Moreira talks about Xynthia, a storm that affected North Atlantic and Europe in the end of February 2010. He focuses on the cyclogenesis process, which fits the classification of a "bomb", and on the remote observations of the storm. This observation does not only cover MSG imagery, but also ASCAT wind data and derived mean sea level pressure estimates. The advantages and disadvantages of using ASCAT wind in nowcasting for this kind of storms is also discussed.
The presenter gives an overview into the mechanisms of convective lines connected to winter storms such as Emma.
Convective lines in connection with intense cyclogenesis hit Middle and Western Europe almost every winter season. These lines move very quickly and are often connected with thunderstorms, heavy gusts and graupel or even hail. In this presentation the related conceptual model and the preconvective environment will be explained. Based upon different satellite products and additional data two examples will be discussed.