Snow water equivalent by MW Radiometry (H13) and New Global (hemispherical) SWE 25 km Resolution (H65) (using products from Jupyter notebook)


Matias Takala presents practical examples of how to use the H13 product (Snow Water Equivalent) will be presented using Jupyter notebook.


The Snow Water Equivalent (SWE) is a parameter that describes the water content of snow mass. If snow would melt in its place the SWE tells the depth of the resulting water layer. Spaceborne microwave radiometers are well suited for the detection of SWE. Even though the spatialresolution of radiometer data is rather coarse (tens of kilometres) a polar orbiting satellite can cover most of the globe in 24h period. Unlike optical instruments radiometer depends only on natural thermal radiation of objects and doesn’t require illumination from sun. In addition, radiometers are quite insensitive to weather phenomena. The EUMETSAT H SAF SWE products H13 and H65 are described in detail in this presentation. The products are merged products containing Finnish Meteorological Institute (FMI) contribution for flat lands and Turkish State Meteorological Service (TSMS) contribution for mountainous areas. Both products use Helsinki University of Technology (HUT) model as basis for the estimates. The FMI algorithm is a data assimilation algorithm combining ground-based snow depth measurements with spaceborne derived SWE estimates and the TSMS algorithm uses modified HUT model for mountains. The nominal resolution for H13 is 0.25° and for H65 25 km. Product H13 is provided for Europe in so called H-SAF area [25-75°N lat, 25°W-45°E long]. The upcoming product H65 will provided for Northern Hemisphere in EASE2 format. The products are validated against independent SWE snow course measurements.

In thissession, practical examples of how to use the H13 product will be presented using Jupyter notebook.

Go to Webcast...